Forklift Alternators

Forklift Alternators - A machine utilized in order to convert mechanical energy into electrical energy is actually known as an alternator. It can perform this function in the form of an electric current. An AC electrical generator can in essence also be termed an alternator. Nevertheless, the word is usually utilized to refer to a rotating, small device powered by internal combustion engines. Alternators which are placed in power stations and are powered by steam turbines are called turbo-alternators. The majority of these machines make use of a rotating magnetic field but every now and then linear alternators are likewise utilized.

If the magnetic field around a conductor changes, a current is produced inside the conductor and this is the way alternators produce their electricity. Normally the rotor, which is actually a rotating magnet, revolves within a stationary set of conductors wound in coils located on an iron core which is actually referred to as the stator. If the field cuts across the conductors, an induced electromagnetic field otherwise called EMF is produced as the mechanical input causes the rotor to revolve. This rotating magnetic field generates an AC voltage in the stator windings. Typically, there are 3 sets of stator windings. These physically offset so that the rotating magnetic field produces 3 phase currents, displaced by one-third of a period with respect to each other.

In a "brushless" alternator, the rotor magnetic field could be caused by induction of a lasting magnet or by a rotor winding energized with direct current through brushes and slip rings. Brushless AC generators are usually found in bigger machines compared to those used in automotive applications. A rotor magnetic field may be produced by a stationary field winding with moving poles in the rotor. Automotive alternators normally make use of a rotor winding which allows control of the voltage induced by the alternator. This is done by changing the current in the rotor field winding. Permanent magnet machines avoid the loss because of the magnetizing current inside the rotor. These machines are limited in size due to the price of the magnet material. As the permanent magnet field is constant, the terminal voltage varies directly with the generator speed.